

the best in cardiovascular health

Update on FH Services and Management in Wales

Rob Gingell FH Nurse – North Wales (robert.p.gingell@wales.nhs.uk)

Declarations of Interest

• Sanofi, Daiichi Sankyo, Amgen

Introduction

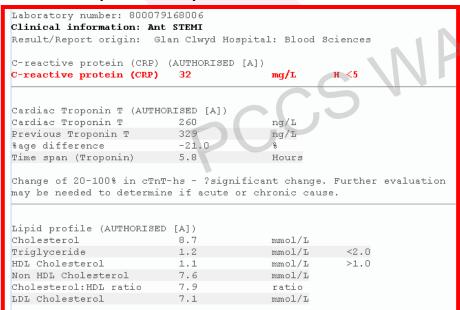
Familial Hypercholesterolaemia

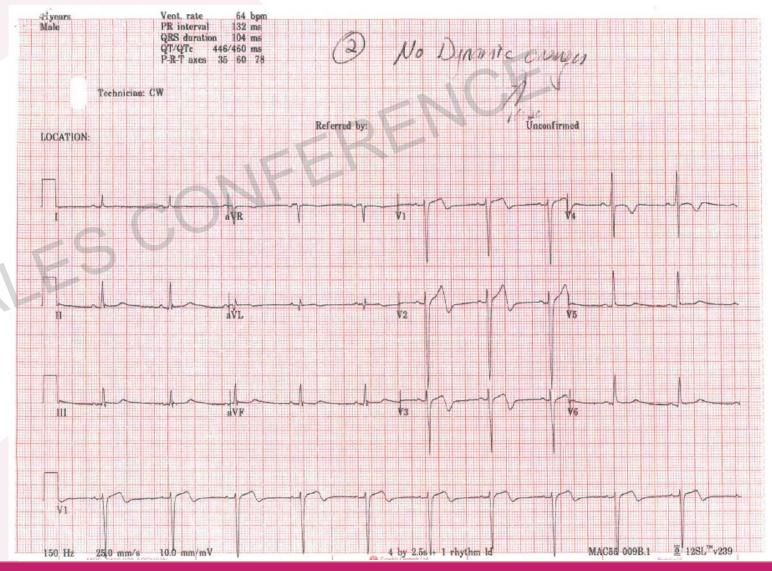
Aim – To provide an overview of the management of familial hypercholesterolaemia in Wales.

- Describe the incidence and burden of familial hypercholesterolemia in Wales and the UK
- Describe the optimum approach to the management of familial hypercholesterolemia, referring to national and international guidelines
- Provide an overview of the All Wales Familial Hypercholesterolaemia Service and the impact this
 has had on patient care

Acknowledgements – All Colleagues; especially Kate Haralambos (All Wales Network Manager) for providing FH / Genotype data.

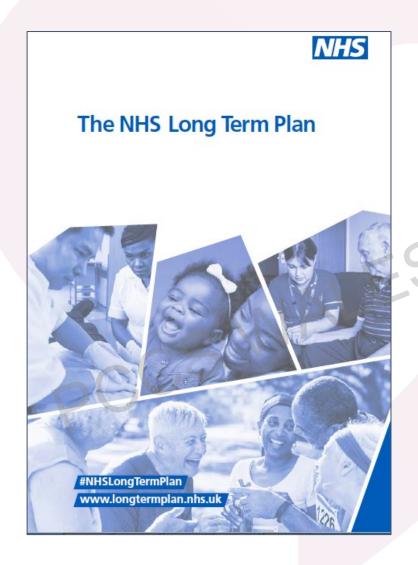
Missed Opportunity??



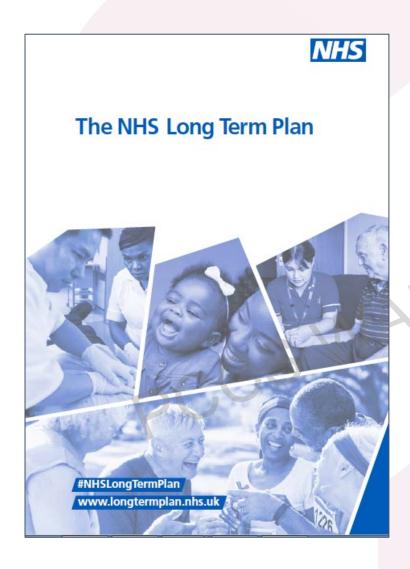

the hest in cardiovascular health

Fit / athletic looking 41yo ♂ self presented to A&E:

- Mother lives outside Wales apparently with clinical diagnosis of FH (family never screened)
- Diagnosing and treating people with FH and 'cascade' screening their families provides an opportunity for preventing the damage caused by coronary heart disease



NHS Long Term Plan



- Commitments set out in the NHS Long Term Plan to improve detection and management of atrial fibrillation, high blood pressure and high cholesterol in order to prevent heart attacks and strokes
- Priority areas include; identification and optimal management of patients with high risk conditions for CVD (AF, hypertension, high cholesterol, diabetes - ABCD)
- CVD recognised as the single biggest area where the NHS can safe lives over next 10 years

NHS Long Term Plan...FH!

Focus targeted investment in areas of transformative innovation - particularly genomics

More personalised therapeutic options:

- "Expanding access to genetic testing for Familial Hypercholesterolaemia (FH), which causes early heart attacks and affects at least 150,000 people in England, will enable us to diagnose and treat those at genetic risk of sudden cardiac death."
- "Currently only 7% of those with FH have been identified. Aim to improve that to at least 25% in the next five years (2024) through the NHS genomics programme."

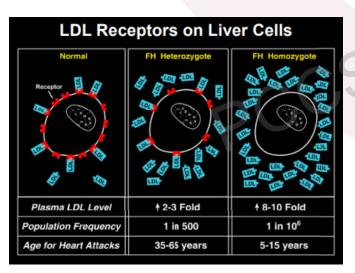
Most FH due to LDLR Variants...

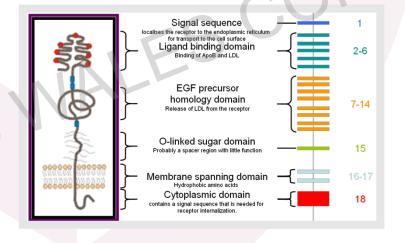
And ~5% by APOB, 2% PCSK9

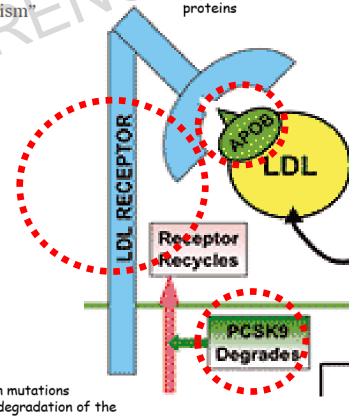
Society

Removal of LDL from the blood

dependent on 3

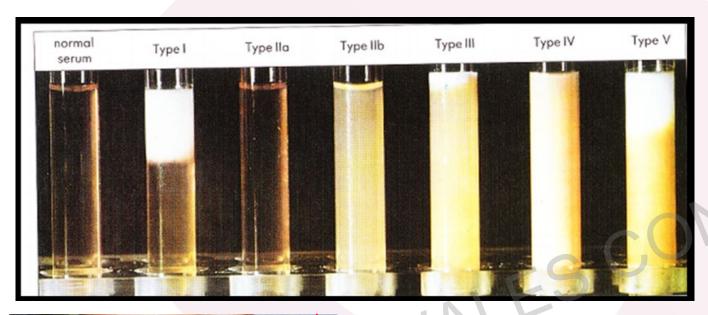


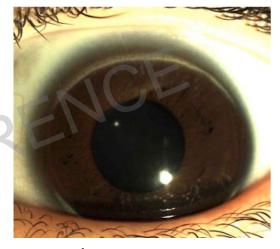

The Nobel Prize in Physiology or Medicine 1985


Michael S. Brown and Joseph L. Goldstein

"for their discoveries concerning the regulation of cholesterol metabolism"

Over >2000 variants known for FH


gain of function mutations increasing the degradation of the LDL receptor


Dyslipidaemias + FH Clinical Signs

the best in cardiovascular health

A 2.6-year-old \circlearrowleft presented with corneal arcus. Pathogenic variants LDLR:c.1069G>A and c.2034C>A.1

Absence of clinical signs (for example, tendon xanthomata) in adults and children/young people does not exclude a diagnosis of FH.²

Classification

Exclude secondary causes first:1-3

Hypothyroidism

Nephrotic syndrome

Cholestasis

Drugs: retinoids, cyclosporin, HAART

Poorly controlled DM

Excess alcohol

Hypertriglyceridaemia

Hypercholesterolaemia

Primary dyslipidaemia:

Predominantly hypercholesterolaemia

Predominantly hypertriglyceridaemia

Mixed dyslipidaemia

Clinical information: borderline lipids

Result/Report origin: Blood Sciences at Ysbyty Glan Clwyd

Lipid profile (Authorised [A]) Cholesterol mmol/L 10.1 2.3 H <2.0 Triglyceride mmol/L HDL Cholesterol 1.3 mmol/L >1.2 Non HDL Cholesterol 8.8 mmol/L Cholesterol: HDL ratio 7.8 ratio 7.8 mmol/L LDL Cholesterol

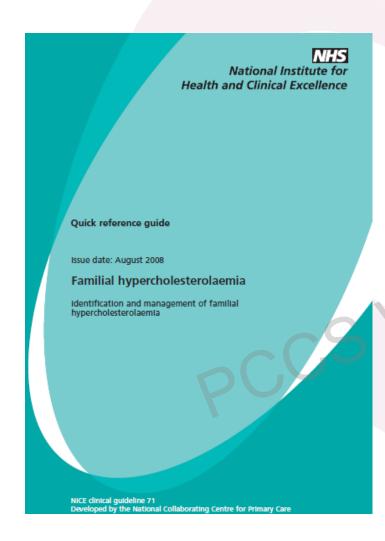
Non-HDL cholesterol is reported in accordance with NICE CG 181 LDL cholesterol may not be valid for non-fasting samples.

Secondary Causes (Examples)

Cause	Tests
Liver dysfunction	LFT, GGT
Hypothyroidism	TFT
Renal disease	U&E, urine dipstick
Diabetes	Fasting glucose
Drugs	thiazides, beta blockers,
acs W	protease inhibitors, anti-
DCC	psychotics, retinoids

Patient A

Lipid profile (AUTHORISED	[A])		
Cholesterol	2.6	mmol/L	
Triglyceride	1.3	mmol/L	<2.0
HDL Cholesterol	1.0	mmol/L	L >1.0
Non HDL Cholesterol	1.6	mmol/L	
Cholesterol:HDL ratio	2.6	ratio	
LDL Cholesterol	1.0	mmol/L	
		111110 11 / 11	


Lipid profile (Authorised	[A])		
Cholesterol	5.6	mmol/L	
Triglyceride	0.4	mmol/L	<2.0
HDL Cholesterol	1.8	mmol/L	>1.0
Non HDL Cholesterol	3.8	mmol/L	
Cholesterol:HDL ratio	3.1	ratio	
LDL Cholesterol	3.6	mmol/L	

Patient B

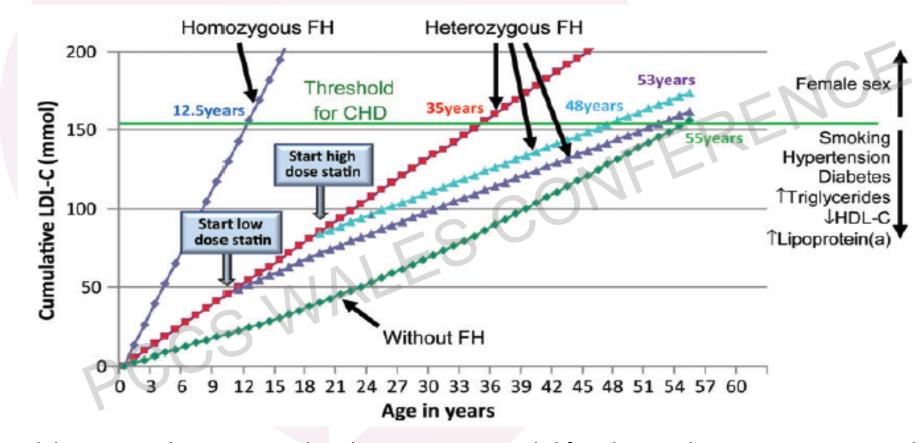
Case Finding and Diagnosis

Suspect familial hypercholesterolaemia (FH) as a possible diagnosis in adults with:

• a total cholesterol level greater than 7.5 mmol/l or a personal or family history of premature coronary heart disease (an event before 60 years in an index individual or first-degree relative). [2008, amended 2019]

Systematically search primary care records for people:

- younger than 30 years, with a total cholesterol concentration greater than 7.5 mmol/l and
- 30 years or older, with a total cholesterol concentration greater than 9.0 mmol/l as these are the people who are at highest risk of FH. [2017]


For people with a personal or family history of premature coronary heart disease (an event before 60 years in an index individual or first-degree relative), but whose total cholesterol is unknown, offer to measure their total cholesterol. [2017]

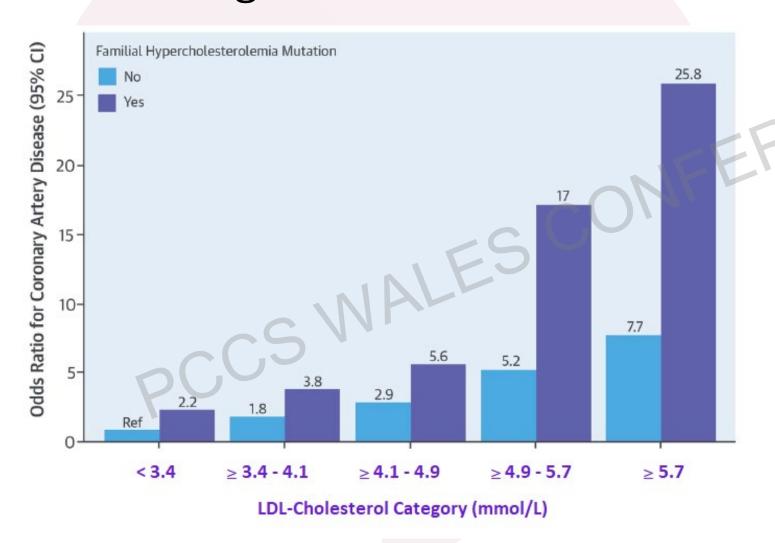
Carry out cascade testing using DNA testing to identify affected first- and secondand, when possible, third-degree biological relatives of people with a genetic diagnosis of FH. [2017]

Early Intervention is Best Treatment \(\mathcal{O}\)

Clinical guidelines strongly recommend early intervention with lifestyle – and statin treatment. In the young, the goal is to prevent the initial formation of atherosclerotic plaques rather than arresting or reversing growth after they have become established within the arterial wall.

Prevalence of FH According to Different LDL Cholesterol Thresholds and Mutation Classification Schemes

LDL Cholesterol Criteria	Mutation Criterion	Prevalence of FH
LDL cholesterol ≥4.9 mmol	No mutation / variant required	1,386 of 20,485 (1 in 14)
No threshold requirement	 LDLR loss-of-function variant; or LDLR predicted damaging rare missense variant; or LDLR , APOB , PCSK9 variant pathogenic in ClinVar 	97 of 20,485 (1 in 211)
LDL cholesterol ≥ 4.9 mmol	•LDLR loss-of-function variant; or •any rare LDLR missense variant	80 of 20,485 (1 in 256)
LDL cholesterol ≥3.36 mmol	 LDLR loss-of-function variant: or LDLR predicted damaging rare, missense variant; or LDLR , APOB , PCSK9 variant pathogenic in ClinVar 	68 of 20,485 (1 in 301)
No threshold requirement	 LDLR loss-of-function variant; or LDLR predicted damaging rare missense variant 	60 of 20,485 (1 in 341)
LDL cholesterol ≥4.9 mmol	 LDLR loss-of-function variant; or LDLR predicted damaging rare missense variant; or LDLR, APOB, PCSK9 variant pathogenic in ClinVar 	24 of 20,485 (1 in 853)

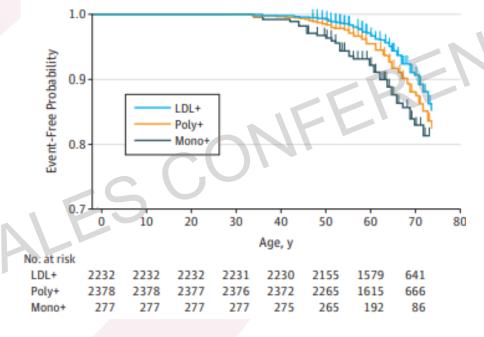

Note: A substantial proportion of individuals with high LDL-C have 'Polygenic' causes (involving several loci throughout the genome).

Impact of FH Mutation Status on CAD According to LDL-C

the best in cardiovascular health

Conclusions: For any observed LDL cholesterol, FH mutation carriers had substantially increased risk for CAD.

FH Genotype Reports + SNP Scores



Association of Monogenic vs. Polygenic Hypercholesterolemia With Risk of Atherosclerotic Cardiovascular Disease

	LDL-C weighted score in WHII controls		_		WHII contr LDL-C >4·9		Risk ratio (95% CI) of LDL-C >4·9 mmol/L*	
	Mean (SD)	Range	-	Measured	Predicted			
Decile 1	0.43 (0.14)	-0.5 to 0.58	3.76 (0.95)	36/299 (12%)	51/302 (17%)	NA		
Decile 2	0.66 (0.04)	0-58 to 0-73	3.99 (0.88)	43/296 (15%)	69/302 (23%)	1.21 (0.80-1.82)		
Decile 3	0.77 (0.03)	0-73 to 0-81	4-21 (0-96)	71/300 (24%)	82/302 (27%)	1.97 (1.36-2.84)		
Decile 4	0.85 (0.02)	0-81 to 0-88	4-34 (0-95)	85/298 (29%)	88/303 (29%)	2-37 (1-66-3-38)		
Decile 5	0.91 (0.02)	0-88 to 0-93	4.36 (0.94)	80/300 (27%)	94/302 (31%)	2-21 (1-55-3-17)		
Decile 6	0.96 (0.01)	0-94 to 0-98	4.48 (0.91)	96/298 (32%)	100/302 (33%)	2.68 (1.89-3.79)		
Decile 7	1.00 (0.01)	0-98 to 1-02	4.50 (1.00)	102/295 (35%)	106/302 (35%)	2-87 (2-04-4-05)		
Decile 8	1.05 (0.02)	1.02 to 1.08	4.56 (0.93)	96/292 (33%)	108/301 (36%)	2-73 (1-93-3-87)		
Decile 9	1.12 (0.02)	1.08 to 1.16	4.68 (1.05)	120/294 (41%)	118/302 (39%)	3-39 (2-42-4-74)		
Decile 10	1.23 (0.06)	1-16 to 1-46	4.90 (0.99)	148/295 (50%)	130/302 (43%)	4-17 (3-01-5-78)		
Please see appendix for details of how we predicted the LDL-C values. LDL-C=low-density lipoprotein cholesterol. WHII=Whitehall II. NA=not applicable. *Decile 1 used as reference.								
Table 3: Out	tcome data in	Whitehall II contr	ols according to we	eighted LDL-	C gene score	e deciles		

Time to event analysis for composite CVD events

Conclusion:
Genetic determinants of
LDL-C levels impose
additional risk of CVD

Clinical Summary: Family history of premature CHD.

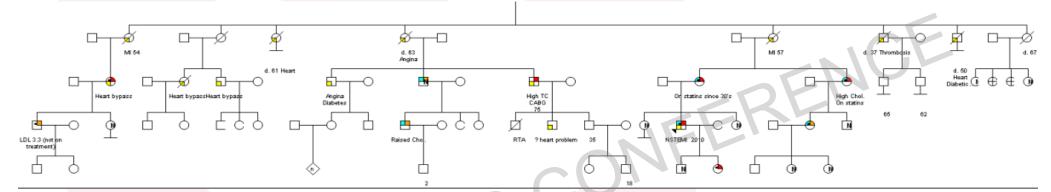
Baseline 2001: Cholesterol 9.1, LDL 6.8, Trig 0.9. For FH NGS analysis.

Sequence Analysis	LDLR Dosage Analysis	LDL-c raising SNP score
No Pathogenic Variant Detected	No Duplications or Deletions Detected	Score: 1.213 Declle: 10
Report Summary High	FH not confirmed Likelihood of Polygenic Hypercholeste	arolaemia
SLCO181 polymorphisms ^{1,2} :	rs2306283 genotype A/G	rs4149066 genotype T/T


Case Finding??

CYMRU | Rhwydwaith Cardiaidd Cymru | Wales Cardiac | Network

Driving primary care to deliver the best in cardiovascular health



Case History – One Family's Experience of FH...

41 year old fit and active civil servant:

- Admitted on Boxing Day 2010 with central chest pain
- Anterior NSTEMI, Tchol 9.7 mmol/L
- Transferred to Liverpool Heart & Chest Hosp:
 - proximal LAD 99% stenosis (PCI to LAD)
 - Good recovery post PCI

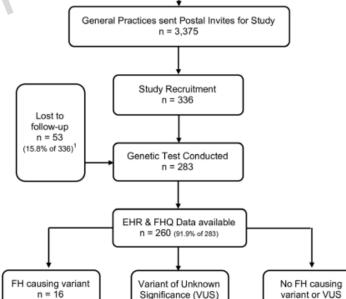
Currently 20 individuals have been tested within family 8 people tested +ve (offered treatment), 12 tested –ve

FH Case-Finding: FAMCAT

Open access

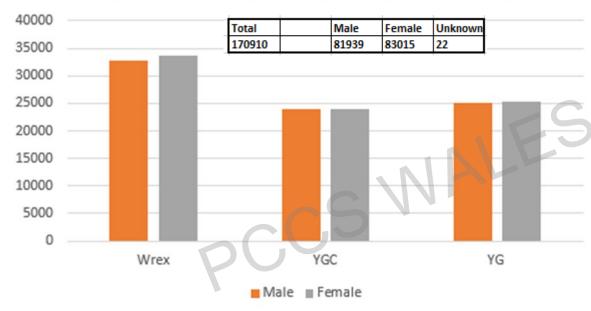
Cardiac risk factors and prevention

openheart Comparing the performance of the novel FAMCAT algorithms and established case-finding criteria for familial hypercholesterolaemia in primary care


Nadeem Qureshi ⁰, ¹ Ralph K Akyea ⁰, ¹ Brittany Dutton ⁰, ¹ Jo Leonardi-Bee, ^{1,2} Steve E Humphries, ³ Stephen Weng ⁰, ⁴ Joe Kai ⁰

Driving primary care to deliver the best in cardiovascular health Total Population (14 General Practices) n = 193,589 Total Eligible n = 86,219

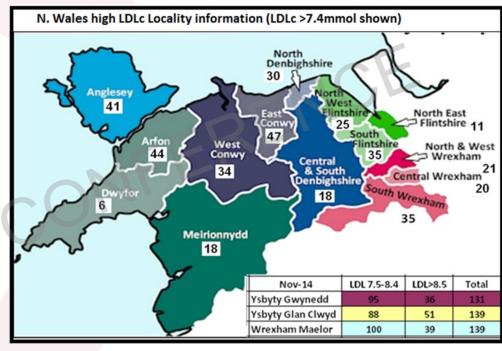
n = 9


n = 258

BCUHB Cholesterol Tests (12m) (n=170910; assume >600 FH)

TOTAL LDL LEVELS (BCUHB 12M)




(BCUHB) LDL Data / Daily Lists

the best in cardiovascular health

	Jan	Feb	March	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	Total	Ave week
2019	0	0	0	0	0	0	0	0	0	376	379	199	954	73
2020	382	325	223	45	70	145	251	196	258	280	275?	118	2293	44
2021	277	210	344	360	301	187	266	277	245	216	296	223	3202	62
2022	411	460	517	436	474	432	432	400	407	251	289	211	4720	91
2023	358	318	0	0	0	0	0	0	0	0	0	0	676	

	>8.5	7.5 - 8.4	6.5 - 7.4
W91005	5	9	19
W91029	5	2	13
W91032	2	0	7
W91037	0	1	9
W91046	3	3	12
W91055	0	4	14
W91636	0	2	9
39,080	15	21	83

High LDLc Alerts – Inpatient / Cardiology (Cath lab setting)

Prior to Alerts, in 2015 – 2072 patients attended N. Wales Cardiac Centre / Cath lab; **29** (1.4% had history of LDLc ≥6,5mmol) Collectively, these pts + those attending for Echo, Pacing +/- ICD in Ysbyty Glan Clwyd n=8625. ~0.6% on high LDL list

N. Wales Cardiology (2015) High LDL pt attendances

Cardiology Activ				
LDLC mmol	6.5-7.4	Total		
Number	46	8	3	57
Number seen	16	5	0	21
Percent	35%	63%	0%	37%

Primary Care

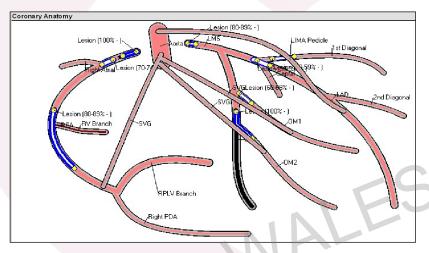
Society

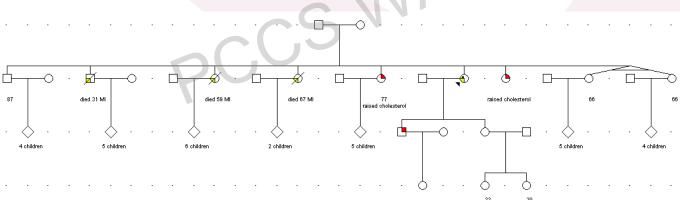
Cardiovascular

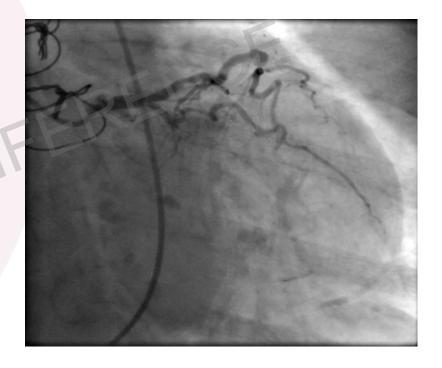
Driving primary care to deliver

the best in cardiovascular health

Following initiating automated Alerts – <u>All Alert</u> cardiology in-patients routinely seen +/- offered genotyping for FH (~1% of Catheter Lab pts)




Cath Lab FH Patient Case



74 year old lady (LDL>8.5mmol) +ve FH

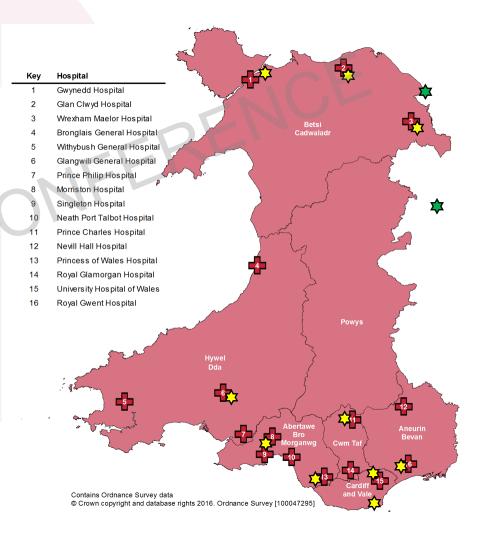
All Wales FH Service

the best in cardiovascular health

Grŵp Cydlynu Rhwydwaith y Galon Cardiac Networks Co-ordinating Group

A British Heart Foundation Heart Support Group

WALES FAMILIAL HYPERCHOLESTEROLAEMIA CASCADE SCREEENING PROGRAMME


LAUNCH INVITATION

9th December 2010

Edwina Hart - Minister for Health and Social Services

CROSS BORDER Issues

www.parliament.uk	Accessibility Email alerts RSS feeds Contact us						
Home Parliamentary business MPs, Lords & offices Abo	ut Parliament Get involved Visiting Education						
House of Commons House of Lords What's on Bills & legisla	tion Committees Publications & records Parliament TV News Topics						
You are here: Parliament home page > Parliamentary business > Publications and Records > Committee Publications > All Select Committee Publications > Commons Select Committees > Welsh Affairs > Welsh Affairs The Provision of cross-border health services for Wales - Welsh Affairs Committee Contents							

Eligibility for Familial Hypercholesterolaemia genotyping:

	1	2	3	4
Patient resident in	England	England	Wales	Wales
Registered GP surgery in	England	Wales	England	Wales
Eligible for All Wales FH Genotyping	No	Yes	Yes	Yes

FREE PRESCRIPTIONS^{1,2}

As of 1 April 2007, prescription charges were abolished for Welsh patients in Wales, including all patients registered with a Welsh GP who fill their prescriptions from Welsh pharmacists and those patients with an English GP as long as they fill their prescription from a Welsh pharmacist and present their entitlement card.

Top 20 Commonest Variants Found in Wales

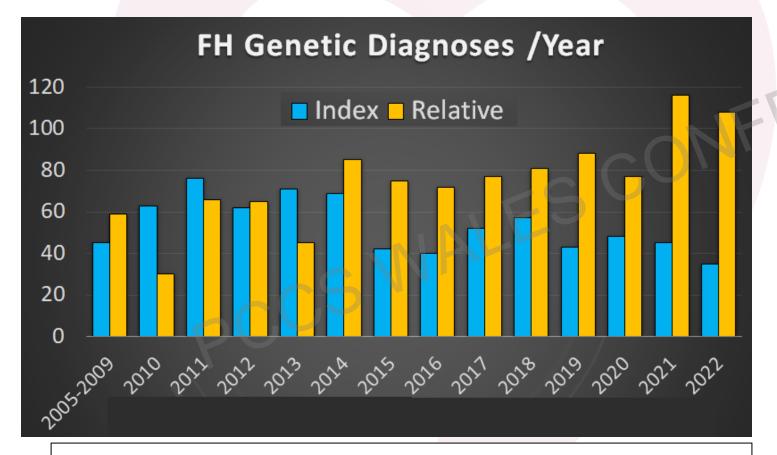
Mutation (1)	North	Powys	South East	South West	Grand Total
APOB:c.10580G>A	54	2	72	51	179
LDLR:c.1816G>T	52	1	31	23	107
Deletion of exon 7	52		7	29	88
LDLR:c.301G>A	41		30	5	76
LDLR:c.2042G>C	1		9	40	50
LDLR:c.1444G>A	17	1	11	19	48
LDLR:c.313+1G>A	16		13	12	41
LDLR:c.2054C>T	24		9	6	39
LDLR:c.118del			32	1	33
LDLR:c.1217G>C			31		31
LDLR:c.1745T>C	3		19	8	30
LDLR:c.1285G>A	2	3	19	5	29
LDLR:c.1061A>T		()	12	13	25
LDLR:c.1133A>C			19	5	25
LDLR:c.1436T>C	3		8	9	20
LDLR:c.1897C>T	5		12	3	20
LDLR:c.1048C>T	8		5	5	18
LDLR:c.1447T>C	8	3	7		18
APOE:c.500_502del	2		13	2	17
LDLR:c.136T>G	2		1	14	17

Driving primary care to deliver the best in cardiovascular health

Characterisation of the deletion breakpoints in Familial Hypercholesterolemia families with a common deletion of exons 2-6 of the LDLR gene

Frances White! Julie Silbering! Alican Taylor! Junice Barland' and Reger Mountfor

common deletion of exons 2-6 of the LDLR gene


This deletion is the most common mutation in the LDLR gene detected to date in the North-West Region of the UK.

Multiplex Ligation-dependent Probe Amplification-MLPA ▼ Garagemen : p.for19:11.059.057-11.107.500 (HCBI 30) - 40.449 bps Figure 1.0 state from Alarmit). Miso focus—focus: Yellaw Dosos—follows MLPA - Confirmed deletion of exons 2-6 in LDLR pene in all 12 patien Long-Range PCR - PCR products of approx. 10Kb, 2.5Kb and 300bp were obtained. All 12 patients had the same sized product Sequencing - Breakpoint was identified from sequencing 300bp purified PCR product at c.68-2467, 940+1229dcl10.999 DISCUSSION AND CONCLUSIONS

- Further work is origining looking at polymorphic loci fluiding the breakpoint to determine whether all 12 access represent a single ancestral mutation or whether the region is prone to produce the same deletion.
- The aim now is to design an assay that allows other family members a simple and cost effective test as part of cascade screening in HI rather than use MLPA. It may also be possible to integrate a test for this deletion into the initial screen for "common" mutation encountering the propulation.

All Wales FH Service Genotyping Figures (Jan 2023)

~2.6 Relatives Tested per Index (Range 0 – 31)

5453 patients genotyped

3499 1954 relatives

748 +ve 1051 +ve 903 -ve

1799 +ve ~15% of FH pts identified

85 of 748
LDLR Mild mutations/
reduced penetrance

Mild Pathogenic / Reduced Penetrance Mutations Identified in Wales So Far.

Primary Care Cardiovascular Society

- APOB
 - APOB:c.10580G>A 89 index patients (most common mutation, 12%)

- Mild LDLR mutations
 - 85 indexes with known mild LDLR mutations
 - LDLRc.1816G>T 39 index patients (2nd most common mutation, 5%)

Challenges of cascade testing of mild mutations

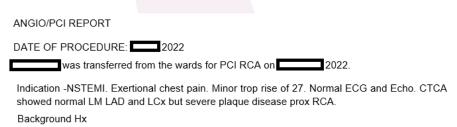
Drugs – prescribing category

BRAG (Formulary Status)		
Green (GP first choice)		
Green (GP prescribe – 2 nd line)		
Green		
Amber		
Amber		
Red		
Red		
Amber		
Blue (awaiting NICE)		

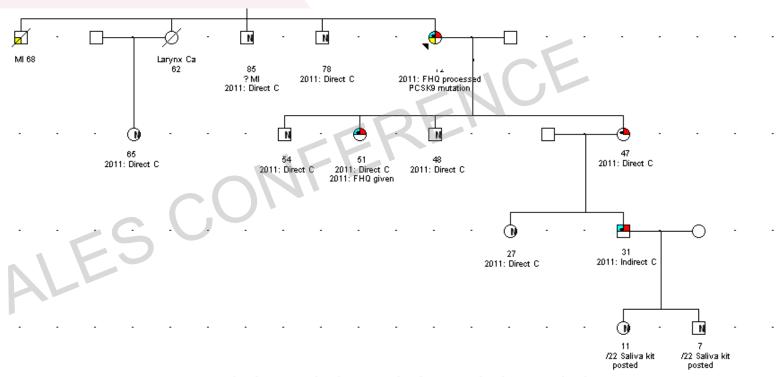
Green – Primary care and secondary care prescribing

Amber – Secondary care initiation, primary care continuation


Red – Secondary care prescribing only


Case: PCSK9 GoF & Premature

the best in cardiovascular health



1. FH.

2. Hypothyroid

Coronary angiogram RRA. 6 Fr sheath.

Very anxious, needle phobia. Given Midazolam 2 mg, Fentanyl 50 mcg upfront.

Date Collected	: 09/09/2	22 21/06/22	21/04/20	09/03/20	20/04/15
Lipid profile		Ref2	Ref3	Ref4	Ref5
Fasting Status	:	Random	Fasting	Fasting	Fasting
Cholesterol	:	9.8	6.1	10.9	10.2
Triglyceride	:	0.9	1.0	0.6	0.6
HDL Cholesterol	:	0.7 L	0.8 L	1.3	1.1
NHDL	:	9.1	5.3	9.6	
HDLRAT	:	14.0	7.6	8.4	9.3
LDL Cholesterol	:	8.7	4.8	9.3	8.8

Conclusions

- Under-diagnosis of FH represents a significant missed opportunity for prevention of coronary artery disease and premature death. Some patients with undetected FH will suffer avoidable premature CVD and higher risk of early death¹
- Genetic testing used is the gold-standard diagnostic²